Academic Journals Database
Disseminating quality controlled scientific knowledge

A model of cytoskeletal reorientation in response to substrate stretching

ADD TO MY LIST
 
Author(s): Lazopoulos K.A. | Lazopoulos A.K. | Stamenović D.

Journal: Theoretical and Applied Mechanics
ISSN 1450-5584

Volume: 35;
Issue: 1-3;
Start page: 171;
Date: 2008;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

Keywords: biomechanics | cytoskeleton | actin | microtubules | total potential | global minimum | stability | substrate stretching | reorientation

ABSTRACT
Living adherent cells change their orientation in response to substrate stretching such that their cytoskeletal components reorganize in a new direction. To study this phenomenon, we model the cytoskeleton as a planar system of elastic cables and struts both pinned at their endpoints to a flat flexible substrate. Tensed (pre-strained) cables represent acting stress fibers, whereas compression-bearing struts represent microtubules. We assume that in response to uniaxial substrate stretching the model reorients and deforms into a new configuration that minimizes its total potential energy. Using the Maxwell's global stability criterion, we find global minima configurations during static extension and compression of the substrate. Based on these results, we predict reorientation during cyclic stretching of the substrate. We find that in response to cyclic stretching cells either reorient transversely to the direction of stretching, or exhibit multiple configurations symmetrically distributed relative to the direction of stretching. These predictions are consistent with experimental data on living cells from the literature.
     40% off discount for PC Health Advisor