Academic Journals Database
Disseminating quality controlled scientific knowledge

The distribution and tapping tidal energy

ADD TO MY LIST
 
Author(s): Zygmunt Kowalik

Journal: Oceanologia
ISSN 0078-3234

Volume: 46;
Issue: 3;
Start page: 291;
Date: 2004;
Original page

Keywords: Tides | Extreme tides | Energy conservation | Tidal power plants

ABSTRACT
Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.     The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned towards preservation of the natural tidal regime. To answer the many questions related to tidal regime changes, it is important to develop a new branch of tidal dynamics which will help to better understand the interaction between a natural tidal regime and future changes caused by tapping into tidal energy.
Get a faster system with an easy scan today!     Perfect English Grammar