Academic Journals Database
Disseminating quality controlled scientific knowledge

Analysis of recently identified dyslipidemia alleles reveals two loci that contribute to risk for carotid artery disease

ADD TO MY LIST
 
Author(s): Ronald James | Rajagopalan Ramakrishnan | Ranchalis Jane | Marshall Julieann | Hatsukami Thomas | Heagerty Patrick | Jarvik Gail

Journal: Lipids in Health and Disease
ISSN 1476-511X

Volume: 8;
Issue: 1;
Start page: 52;
Date: 2009;
Original page

ABSTRACT
Abstract Background Genome-wide association studies have identified numerous single nucleotide polymorphisms (SNPs) affecting high density lipoprotein (HDL) or low density lipoprotein (LDL) cholesterol levels; these SNPs may contribute to the genetic basis of vascular diseases. Results We assessed the impact of 34 SNPs at 23 loci on dyslipidemia, key lipid sub-phenotypes, and severe carotid artery disease (CAAD) in a case-control cohort. The effects of these SNPs on HDL and LDL were consistent with those previously reported, and we provide unbiased estimates of the percent variance in HDL (3.9%) and LDL (3.3%) explained by genetic risk scores. We assessed the effects of these SNPs on HDL subfractions, apolipoprotein A-1, LDL buoyancy, apolipoprotein B, and lipoprotein (a) and found that rs646776 predicts apolipoprotein B level while rs2075650 predicts LDL buoyancy. Finally, we tested the role of these SNPs in conferring risk for ultrasonographically documented CAAD stenosis status. We found that two loci, chromosome 1p13.3 near CELSR2 and PSRC1 which contains rs646776, and 19q13.2 near TOMM40 and APOE which contains rs2075650, harbor risk alleles for CAAD. Conclusion Our analysis of 34 SNPs contributing to dyslipidemia at 23 loci suggests that genetic variation in the 1p13.3 region may increase risk of CAAD by increasing LDL particle number, whereas variation in the 19q13.2 region may increase CAAD risk by promoting formation of smaller, denser LDL particles.
Grammarly - world's best grammar checker